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Abstract 

Sudarshan's semi-classical treatment of correlation functions is applied to the study of 
quantum corrections to the Van Hove function. In its generalised form, it enables one to 
choose the best correlation function for a given potential. Higher-order correlations are 
also sketched briefly and the details are similar to those considered by Oppenheim and 
Bloom. 

1. Introduction 

For  scattering by a system of interacting particles the differential 
cross-section depends on the spatial and temporal correlations between the 
particle configurations. In the Born approximation this scattering cross- 
section can be expressed (Van Hove, 1954) in terms of Van Hove 's  space- 
time correlation function G(r, t). I f  the momentum and energy transfers are 
small, the phenomenon can be treated classically whereas, with large 
transfers, quantum effects begin to appear. These are computed as cor- 
rections to first order in h through the principle of  detailed balance 
(Schofield, 1960; Egelstaff, 1967). 

In this paper the Van Hove correlation function has been related to the 
phase space distribution function of a semi-classical description. This 
procedure due to Sudarshan (1963), facilitates a classical treatment of  a 
quantum problem. Now the quantum effects may be due to either the 
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statistics and/or to the uncertainties in position and momentum variables 
of the particles. Since it is possible to formally separate these causes 
(Oppenheim & Bloom, 1961), one can take for simplicity only the latter 
effects, and embed them entirely in the phase space distribution. In this 
way, we can demonstrate that G(r, t) is directly related to the 2-particle 
Wigner distribution. But the Wigner distribution gives the semi-classical 
description of a quantum theory in which the position and momentum 
operators are ordered according to Weyl's rule. But there are other rules of 
correspondence leading to different semi-classical descriptions (Cohen, 
1966; Misra & Shankara, 1968) and these, in turn, lead to 'different quantum 
corrections' to the correlation function. Hence we hope, that for a given 
potential, we could allocate a particular correlation function from among a 
whole class of them, which describe the interacting system. 

Further, the quantum correction to G(r, t) obtained by Schofield (1960) is 
imaginary in the first order of h and G(r, t) itself is envisaged to be complex 
in quantum theory. In our treatment we will see that the complex or the 
real nature of it is not any inherent property, but depends only on the 
particular choice of the semi-classical description, or equivalently, on the 
correspondence of operators to the classical functions. 

In the first section we indicate how G(r, t) could be redefined in terms of a 
generalised phase space distribution, which is further expressed in terms of 
the Wigner distribution. This leads to a method of computing the quantum 
corrections. Making use of these methods of averaging, we redefine G(r, t) 
in Section 3 and the quantum corrections to it are considered. The approxi- 
mations necessary in its calculation are enumerated. In Section 4 the 
principle of detailed balance has been used to derive the constraints on the 
generalised semi-classical descriptions. The time-dependent pair distribution 
function (TDPDF) of Oppenheim & Bloom (1961) is considered in the last 
section as an example of a higher order correlation. We have sketched how 
TDPDF could be extended to arbitrary descriptions. 

2. Series Expansion of  the Distribution 

As a preparation to redefine G(r, t) in the next section, we shall study now 
an expansion of the phase space distribution in powers of h, keeping the 
Wigner distribution as standard. 

In the Born approximation, the differential cross-section per unit solid 
angle and unit energy interval of the outgoing particle is given by 

d z cr 
dO dE = AS(k ,  w) 

where hk and hw are respectively the momentum and energy transfers. The 
Van Hove correlation function is defined as the Fourier transform of 
S(k,w): 

G(r, t )  (27r) -3 N-I  J exp [i(wt - k.r)] S(k, w)dk dw (2.1) 
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In the Born approximation this simplifies to 

For a classical system this integral can be easily evaluated to obtain 

Gc,(r,t) = N- '  (.~. ~(r + r,(O)- u(t)) (2.3) 

But in the presence of quantum effects such a simple integration of (2.3) is 
not possible because, r~(0) and r:(t) are now operators which do not 
commute. In order to circumvent this (Sudarshan, 1963) we use a semi- 
classical description where operators are replaced by ordinary functions 
as in classical theory, but the expectation values are calculated as averages 
of these functions over a distribution which accounts for the quantum 
effects. Thus the correlation function will now be directly related to the 
distribution of a semi-classical picture. 

But the distribution itself depends on the correspondence of operators of 
quantum theory to classical observables. For a classical observable g(r,p) a 
whole class of operators o~(&/~) could be associated, where ~ and/~ are the 
usual position and momentum operators (Misra & Shankara, 1968). Thus 

(2~r) -2 f g(r,p) exp [-i(~r + -rp)] An(~/, "r) exp [i(~/~ + -rfi)] d~ d'r drdp ~ff,/~) 

(2.4) 
where Ah(~/, ~-) is any Hermitian function obeying certain conditions. This 
correspondence gives rise to a generalised phase space distribution 

f(r,p) = (2~r) -2 f exp [-i(~r + ";p - ~u)] p(u, h.r) Ah(~, ~') d~l dz du (2.5) 

Here p(r, h'r) is a certain bilinear form of the wave function of the system 
which appears in the Wigner distribution obtained by setting ~ - 1. This is 
also the value which gives Weyl's rule from (2.4). 

We now express the generalised distribution (2.5) for an N-particle 
system in terms of the Wigner distribution. Using the notation (r,p) for the 
set (rl, rE .... r3N,Pl,P2 . . . . .  P3N) we have 

1 ~ f exp[_i(~)xrj+.rjpj_~]~uj)]p(uj, h.rx)Ah(~Tj,.rx ) f(r,p) - (@r2)3 N . 

• @~d-~jduj 

1 
- (4=2) 3" ~. f )lh(i a--~-'i Or, ~p,] 

• p(uj, h~j) d~s d-~j duj 

= 1-[ Axfw:(r,p) (2.6) 
J 
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\ arj apd 

fwj = (2~r) -2 f exp (-irjpj) p(rj, hr~) drj 

is the Wigner distribution. 
In order to calculate meaningful quantities from the Wigner distribution 

(Oppenheim & Ross, 1957), it is expanded in powers of h: 

fw =fc,(l  + h 2 X, + h4 X2 + ' "  ") (2.7) 

it being well known that only even powers of h should appear, fez is the 
classical distribution and XJ which depend on the potential are the correction 
terms. 

Now ~ in the distribution (2.6) can be expressed as a power series in h in 
most of the cases. Hence it is evident that an expansion off(r,p) similar to 
(2.7) is possible. Since ~ can contain all powers ofh we include the possibility 
of corrections of any order and write 

f=fe , (1  + he, + h 2 42 + ' "  ") (2.8) 

Notice that bo th f and fw  -+f~t, as they should, in the limit of h -+ 0. 
A few comments about the quantum corrections to thermodynamic 

quantities would be relevant (Imre et al., 1967; Nienhuis, 1970). The 
partition function is 

Z=ff~,(1 + h  4, +hZ4z + ...)arap 

and hence the quantum corrections to Zr are obtained by 

Z = Zc,(1 + hCl + h 2 C2 +'" ") 
where 

f 4Jfr dr ap 
Cj 

f f,, ar dp 

Using the expansion (2.6) the partition function also becomes 

= f f ( r ,p )  drdp Z 

= (~(o, 0)) 3" ffw(r,p) dr dp 

f fr + h2x, + h4X2 "~-"" ")drdp (~(0,0))  3~ 

from the expansion (2.7). Comparing the classical terms on both sides we 
get ~(0,0) = 1. Incorporating this value and comparing other powers of/~ 
we obtain (~z,)~l = (Xr)~l and (~2r+l)c l  = O. Thus, 

f fcz(1 + h2x~ + h4xx + "  .)drdp Z 
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i.e., all partition functions obtained by different distributions coincide with 
the one obtained by Wigner's distribution. 

Inserting (2.7) and (2.8) in the relation (2.6) betweenf andfw we have 

f , t ( l+h$ ,+h2$2+ ' " )=~A~( i~ , i~ ) f c , ( l+hZXl+h4X2+ ' " )  

(2.9) 

Since the expressions for X~, X2 . . . .  on the right side of this equation have 
been calculated, (Oppenheim & Ross, 1957) we can make use of them to 
derive expressions for ~ ,  ~2 . . . .  by comparing the coefficients of equal 
powers of h. (It must be remembered that in general h may also contain h.) 
We skip these straight-forward steps and only list the first non-vanishing 
quantum corrections to the distribution for a few well-known orderings.t 

Correspondence Ah(~,7") ~1 or 42 

Symmetrisation cos (�89 ~1 = 0 
1 x--, a 2 ~2 

Born-Jordan sin (�89 61 = 0 
1 E ~2 ~2 42 

Xl 24Lz s"  Ors2 ops---2fcz 

Standard exp (-�89 ~ = ~  [2 j~. ~r~ ~p0jfc~] 

1 i [ ~-' ] 0 0 
Anti-standard exp (�89 ~1 = -fc / [~ r ~rj ~jfc/] 

Normal exp [�88 + .2)] ~ = - .17~jc~ + f~z 

Anti-normal exp [-�88 + .2)] q~ = 4-~,~ [ @  ~._-s-s/f~t 

It is interesting to note that the last four rules give rise to corrections even 
to first order in h. Also the corrections in all the cases are real except with 
standard and antistandard orderings, where it is imaginary. It is because, in 
these two cases, ;~ is not Hermitian and so they do not yield Hermitian 
operators. 

t Equation (2.6) connectingfandfw can also be used to study the time and temperature 
dependences of f keeping those offw as standard. 
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3. Semi-Classical Redefinition of G(r, t) 
In this section we shall redefine the quantum mechanical correlation 

function using the methods of averaging outlined in the previous section. 
The Van Hove correlation function is the expectation value of the integral 

f dr' 3(r + r~ - r') 3(r' - rj(t)) (2.2) N - I  
l,j 

Here, r t = r~(0) and rj(t) are operators which do not commute. But in a 
passage to a semi-classical description we shall treat them as commuting 
functions, but transfer the quantum effects to the generalised phase space 
distribution over which the average value of the integral is taken. Thus, 

ff(r~ . . . . .  r ~ ,  Pl, .... PN) G(r, t) N-I 

• ~ 8(r + r, - rj(t))drl .... drN, dpi .... dpN (3.1) 
l,j 

wheref  (rt,..., rN,pl .... ,PN) is the same as (2.6). As we are considering an 
assembly of identical particles (3.1) integrates to 

N-1 f 2 G ( r , t ) = - ~  f2/N(rl,r2, pl,p2) ~ ~(r +r~-rs(t))drldr2dpldp2 (3.2) 
i , J= l  

where 

f2/I~ N! f ( N -  2) l fN(rN ' pN) drN-2 dpN-2 

is the 2-particle distribution. The considerations of the previous section now 
enable us to calculate G(r, t) once A and the potential of the system have been 
specified. In fact the advantage of this unified approach is that one can 
obtain the best approximation for G (or equivalently, the best operator 
correspondence) for a given potential. Further, since the phase space 
distribution could be extended to include spin (Kaplan & Summerfield, 
1969), the calculations with G for spinning particles could also be done 
classically. 

In the actual calculation of G certain approximations are made depending 
on the nature of the system. These are very well enumerated by Oppenheim 

.& Bloom (1961) in their calculation of the TDPDF. With the same approxi- 
mations we will indicate the calculation of the Van Hove function, taking 
the standard ordering as an example. This is an interesting case as the 
quantum correction is to the first order in h and is also imaginary, like the 
one obtained by Schofield and Egelstaff. However, it does not obey their 
dispersion relation. 

To compute these corrections we first note that the classical correlation 
function is also given by (3.2) withf 2/N replaced by the classical 2-particle 
distribution: viz., 

f~zff(rl' rz'Pl' P2)= ~2 (2~-~) 3exp[/-e ,t3 liP' 12 + [P2'2-2m V(lr' -r21))] (3.3) 
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where fl = (kBT) -1, kB is the Boltzmann constant, T is the temperature of 
the assembly, m mass of the molecule, ~ the density of the system and 
V([rl - r21) is the intermolecular potential. 

Now from the table given in the previous section we have for the standard 
ordering 

f2 /u_r2/u~l  i ih[ a a a 0 \ 2m~ 
-., : j 
_ c2m • ih f12 ::~ ~ ~. V r:~ :2m 

~ f J c |  --.Icl T " ~  l.kg2 -- P1J r 2 (3.4) 

In the case of dilute systems, rj(t) appearing in (3.2) may be given a Taylor 
expansion using classical dynamics limiting the number of terms by the 
'constant acceleration approximation'. Thus 

rj(t) = r i -t pJ t t 2 
m 2mVJ V (3.5) 

Hence the correlation function in standard ordering assumes the form 

Gsta(r , t )=--~-  J J s t  a 8 r + r ~ - r j - ~ - - + ~ - m m V J V  drldr2dpldp2 
i#j 

l ' h e  
2 2 + - pl).V  

- - P z t  " t 2 - -  V)  
• { ' ( r + r l - - r 2  --m- -t- ~m V2 

m ~mmV1 V dri dr2 dpl dp2 (3.6) 

This last expression can be readily calculated once the potential is specified. 
This function is complex and the imaginary part is also the quantum 
mechanical part as with the usual Van Hove function. 

In the case of dense systems (Oppenheim & Bloom, 1961) there will be 
many particle interactions and we should make use of the Langevin's 
equation to compute rj(t) in the argument of the 8 function in (3.2). 
Obviously this would give rise to a more complicated form for Gst~(r, t). 

For other orderings, the correlation function is obtained in an identical 
fashion. 

4. Constraints on A 
From our general treatment of the quantum mechanical correlation 

function, we have seen that the real or complex nature of it depends only 
on the operator correspondence chosen. For a complex G, Schofield has 
used the principle of detailed balance and obtained a dispersion relation 
connecting the imaginary part to the real part. On the other hand, instead of 
obtaining a dispersion relation, we shall make use of the principle of 
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detailed balance to derive conditions on the operator correspondences 
which should conform to the principle. These conditions must be satisfied 
over and above the algebraic conditions on )t referred to after equation (2.6). 

The principle of detailed balance for the scattering cross-section implies 
that 

S(k,-w) = exp ( -  ~ZT) S(k, w ) (4.1) 

Since G(r, t) is the Fourier transform of S(k, w) the dispersion relation of 
Schofield viz., 

Im G(r, t) = - tan ( _ h  _~_a ~ Re G(r,t) 
\2/r 1 at ] 

h a 
2kB TO--t Re G(r, t) 

to the first order in h, is a direct consequence of (4.1). But we shall regard 
(4.1) as a constraint imposed on the correlation function as a consequence 
of the thermal equilibrium of the system. This, in turn, gives rise to 
restrictions on the set of operator correspondences which would allow 
semi-classical descriptions of correlation phenomena. 

In the constant acceleration approximation we have 

f G(r, t) exp [i(k.r - wt)] S(k, w) (2~) -1 N drdt 

1 f2mexp[ i (k . r_wt )  ] ~ r + r l - r 2 - - m - ~ - ~ v 2 v ,  ] 4rr 

+8  r + r z - r l  Plt+m 2m vl  g drldrzdpldp2drdt 

1 f -2/N [/ik.V2 V~ -1/2 ( . . . . . .  2m(w - k.p2/m)2~ 
-4~/~" J J  [ ~ ]  expltK'(rz--r')-~t ~ V  j 

+ ~ ) [ i k ' V l  V~-1/2 exp- ~lik" (rl -r2)+t'2m(w4k.. VII- k" Pl/m)Z~]V/] 

• dr1 dr2 dpl dp2 

Replacing w by -w  on the right-hand side we obtain the corresponding 
expression for S(k,-w). Further, 

fz/Ntr r - ~ 1 f ". 1, 2, P l ,P2)  (477.2) 6 ~ A(~l ,~ l )A(~2 ,~2)p(HI , I12 ,~ l , "~2)  

• exp [-i0ql .rl +vi2 .r2 + ~rl .Pl +'c2.P2 -~ql .ul - ~q2 .u,) 
x d~ql d~q2 d'rl d'~2 dul du2] 

(412)4 f R(Yh, ~2,PI, P2, u', u2) 

x exp [-i(~l.  (rl - ul) + ~2. (r2 - u2)} dvh d~2 dui du2] 
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where 

1 f A(~]l,'cl),~(~2,'c2)P(Ul,u2,'cl,'c2)exp[i('cl.Pl +~2.p2)d'ct dx2] R = (4~r2) ~ 

Substituting these expressions for S(k, w), S(k,-w),  f2/u and noting that 
V 2 V == --~?1 V and setting 

2m k. p~ 
4k .71V ai, m =bi ,  r I - -r  2 = r  

and comparing the integrands resulting from (4.1) we get, 

R(-k ,  k)iexp [-ial(bz + w) 2 - ik. r] + R(k , -k )  exp [ia~(bl + w) 2 + ik. r] (hw) 
= exp - k - ~  [iexp{-ial(b2 - w) 2 - i k . r )R( -k , k )  

+ exp {ia~(bl - w) 2 + ik. r} R(k,-k)]  (4.2) 

This is a functional equation in R and may be considered as a general 
constraint on h imposed by thermal equilibrium of the system. 

5. Generalised TDPDF 

From the general standpoint of statistical mechanics we shall consider, 
in this section, higher order correlation functions which become significant 
with many particle interactions. The one higher-order correlation function 
to which some attention has been paid is the time dependent pair distribution 
function TDPDF of Oppenheim & Bloom (1961), viz., 

G(r2,r '2, t) = ff2/N(rZ, p2) g(r '2 - r t2(r2 ,  p2))  d p  2 (5.1) 

Here r 2 and p2 stand for the coordinates and momenta of two particles at 
t = 0 and the 8 function is a product of six 3 functions. Equation (5.1) is the 
simultaneous probability per unit volume that two particles have positions 
between rl, rl + dr1 and r2, r2 q- dr2 at time 0 and between rl', rl '  + dr1' and 
r2', r2 '+  dr2' at time t. As before, Rta(rZ,p 2) is determined by ordinary 
dynamical methods in the case of dilute systems or by stochastic methods in 
the case of dense systems. The quantum effects are assumed to reside in the 
2-particle distributionf 2/N. 

For the classical case, 

G c , ( r : , r ' : , t )  3 + = \2~rrn] ( t ) 6 e x p { - [ 2 ~  2 ( r ' -  2t  ~flM''-rcl2] trc 

x [gel(r)] 1/2 [g~,(r')] 1/2} (5.2) 

where r, r' are relative coordinates, r~, r~': centre of mass coordinates, 
fl = (k•T) -1, /~: reduced mass, M: sum of the masses, m z=/~M, gc~(r)-- 
exp (-fl V): the radial distribution function. 



272 M.D. SRINIVAS, M. S. SRIRAM AND T. S. SHANKARA 

For the quantum case Oppenheim & Bloom (1961) have discussed (5.1) 
using the Weyl ordering; i.e., using the Wigner distribution for f i n  (5.1). 
With constant acceleration approximation it has the form 

Gw(r2,r'2, t)=Gcl(r2,r'2, t)[l +h2{Dl(r ,r ' , t )+ D2(r,r')}] (5.3) 

where 
[3 3 [. , 2 1 d q l d V  

D1 = 2--~-~[tr - -r)  2 + ( r . ( r ' - - r ) )  r ~ ]  r dr 

3 2 = -  v ?  v +  2-g~(v, v)2 + (r' - r ) . V , v  

. 1 d ] l d V  
+ {r.(r' - r)) {~. vr v) ~ ] 3  ~ (5.4) 

It has been shown that this can be incorporated as a correction to the radial 
distribution which now becomes, 

gw(r )=exp( - /3V)[ l+h  21[- ~/32V2r V + ~ (V~ V) 2}1 (5.4) 

Along similar lines we can obtain corrections for arbitrary orderings. For 
example, using the methods of Section 3, we get for the Born-Jordan 
distribution the corrections corresponding to (5.4), viz., 

/ 33 t~ , D " = D I - ~  [-/(rL - r )  t 2 ] + ~v~ vj  [/3(v~ v) 2 - v ?  z] 

/32 
zV = D, + ~ [/3(vr v) ~ - v ?  v] 

This can in turn be incorporated as Born-Jordan corrections to the radial 
distribution: 

2 /33 V)2} ] 

Such corrections to correlation functions for different orderings may be 
of help in the calculation of quantities, such as the nuclear spin relaxation 
time, which have a direct dependence on the value ofg(r). Though some of 
the indicated corrections may be too small for experimental detection, some 
others are definitely more pronounced. Hence, it is our belief that a unified 
treatment of the quantum corrections such as above is useful from the point 
of view of experiment and also useful in its own right. 

6. Conclusion 

In the quantum theory of liquid correlations the traditional Van Hove 
function is complex. This is not any inherent property of it, but only a result 
of a certain choice of averaging that is employed. There could be different 
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choices, and  they all lead to different semi-classical descriptions. I f  we start  
with a given potential ,  they lead to a class of  correlat ion functions specified 
by a pa ramete r  A. By fixing this parameter ,  it is possible to pick up the mos t  
accurate  G(r, t) f rom a m o n g  a whole class of  correlat ion functions. There  
are some algebraic restrictions on 2~ [which m a y  be found in Cohen  (1966) 
or  Misra  & Shankara  (1968)] and besides, the principle o f  detailed balance 
imposes a constraint  on it which is expressed as a functional  equat ion in 
Section 4. Higher  order  correlat ions could also be considered along 
similar lines, and such a t rea tment  is sketched in the last section. 

Acknowledgement 

We are grateful to Prof. E. C. G. Sudarshan for some clarifications about semi-classical 
descriptions. Thanks are due to Dr. S. R. Valluri and Dr. K. N. Kuchela for their kind 
encouragement. 

References 

Cohen, L. (1966). Journal of Mathematical Physics, 7, 781. 
Egelstaff, P. A. (1967). An Introduction to the Liquid State. Academic Press. 
Imre, K., Ozizmir, E., Rosenbaum, M. and Zweifel, P. F. (1967). Journal of Mathematical 

Physics, 8, 1097. 
Kaplan, D. M. and Summerfield, G. C. (1969). Physical Review, 187, 639. 
Misra, S. P. and Shankara, T. S. (1968). Journal of MathematicalPhysics, 9, 299. 
Nienhuis, G. (1970). Journal of Mathematical Physics, 11,239. 
Oppenheim, I. and Ross, J. (1957). Physical Review, 107, 28. 
Oppenheim, I. and Bloom, M. (1961). Canadian Journal of Physics, 39, 845. 
Schofield, P. (1960). Physical Review Letters, 4, 239. 
Sudarshan, E. C. G. (1963). Physical Review Letters, 10, 277. 
Van Hove, L. (1954). Physical Review, 95, 249. 


